
ABS
A Software for
Abstraction-based
Controller Synthesis
Gunther Reissig∗, Alexander Weber, Elisei Macoveiciuc

User’s Manual

Version 1 May 01, 2022

∗Initiator and administrator of project, University of the Bundeswehr Munich, Dept. Aerospace Eng., Chair of Control
Eng. (LRT-15), D-85577 Neubiberg (Munich), Germany, http://www.reiszig.de/gunther/
This work has been supported by the following sponsors: Deutsche Forschungsgemeinschaft (DFG) under grants no. RE
1249/3-1, RE 1249/3-2, and RE 1249/4-1; Munich Aerospace; and AdaCore.

http://www.dfg.de
http://www.munich-aerospace.de
http://www.adacore.com

Abstract

ABS is a software to solve synthesis, analysis and verification problems for infinite state dynamical
systems. This document provides basic information on how to get, to compile and to use the software.
For more detailed information, useful for programmers as well as for expert users, please refer to the
companion document [1].

Publications

We hope you find this software or its underlying theory interesting, useful or even inspiring. If you
do, we would appreciate it if you would acknowledge and cite our work:
The definitive publication presenting our software is [2]; a BibTeX entry can be found here:
www.reiszig.de/gunther/pubs/WeberMacoveiciucReissig22.html

The definitive publication presenting the underlying theory is [3]; a BibTeX entry can be found here:
www.reiszig.de/gunther/pubs/ReissigWeberRungger17.html

Acknowledgment

ABS is developed and maintained by the group of Gunther Reissig at the University of the Bun-
deswehr Munich. It is based on software created between 2013 and 2017 by Alexander Weber.

The following persons have substantially contributed to the development of ABS: Alexander Weber,
Gunther Reissig, Hao Zhou, Elisei Macoveiciuc.

The following sponsors have supported the development, maintenance and provision of ABS: Deutsche
Forschungsgemeinschaft (DFG) under grants no. RE 1249/3-1, RE 1249/3-2, and RE 1249/4-1; Mu-
nich Aerospace; and AdaCore.

Version and Revision Information

Version: 1.1

Revision: 2714
Date: 2022-05-01/16:28:38.386984Z
Branch Root: https://subversion.unibw.de/lf1agure/ABS/tags/public/CurrentPublicVersion/trunk

Working Copy: /home/reiszig/Software/ABS/tags/public/CurrentPublicVersion/trunk/

Revision of this document: 2710, 2022-05-01 16:16:05Z

www.reiszig.de/gunther/pubs/WeberMacoveiciucReissig22.html
www.reiszig.de/gunther/pubs/ReissigWeberRungger17.html
http://www.dfg.de
http://www.munich-aerospace.de
http://www.adacore.com

Contents

1 Quick Start 5

2 Introduction 5
2.1 Processable control problems . 6
2.2 User input and program output . 7

3 Specification of control problems 8
3.1 Preparatory actions . 8
3.2 Input language . 8

3.2.1 Constants and intervals . 9
3.2.2 Hyper-intervals . 10
3.2.3 Continuous-time unperturbed dynamics . 11
3.2.4 Bound on dynamic uncertainties . 11
3.2.5 Sampling time . 11
3.2.6 Bound on measurement errors . 11
3.2.7 Specifications . 12
3.2.8 Abstraction . 12
3.2.9 Order of integrations . 13

4 Controller synthesis 13
4.1 Starting the computation . 13
4.2 User choices . 14
4.3 Output files . 14

Appendix 15

References 20

3

4

1 Quick Start

ABS is a software to solve synthesis, analysis and verification problems for infinite state dynamical
systems. Follow the steps below to quickly get a copy of ABS running on your computer, and to see it
applied to an example.

Prerequisites. ABS is an implementation of the symbolic controller synthesis framework introduced
in [3] and has been presented in [2]. Users are assumed to be familiar with both of the aforementioned
documents.
ABS should be run on Linux, which is what we assume throughout this document. Some external software
is required as well; we recommend to proceed with the following steps and follow the instructions printed
out on the screen. If this does not work, please refer to [1, Section “System Prerequisites”] for more
specific requirements.

Obtaining a copy of ABS. ABS is maintained using the version control system svn [4], and access
is by user name and password. Create a working copy of ABS in a local directory of your choice, which
may take some time:

> svn checkout --username ABSpublic \

> https://subversion.unibw.de/lf1agure/ABS/tags/public/CurrentPublicVersion \

> <full path to working copy of ABS>

If asked for it, you would use IuseABS as the password.
You have only read access to ABS; you are not allowed to commit to the repository hosting the

software. However, if you are a member of the project administrator’s group at the University of the
Bundeswehr Munich, please refer to [1] for other ways to get (read and write) access.

License. ABS has been made publicly available under GNU General Public License. For terms and
conditions, see the file trunk/COPYING in the working copy of ABS.

Solving a simple synthesis problem. Within the working copy, navigate to the directory
trunk/examples/SinglePole/ and run make. After some time and a continuous flow of messages, you
are asked to choose problem and solution type: choose 0. Then, you should eventually see a message
similar to the following:

- Results:

Control problem has been solved.

Navigate to the directory trunk/examples/SinglePole/Results to see two output files:

Controller.dat

Value_Function.dat

You may modify the control problem in the file SinglePole.abcs (open with a text editor) and start all
over as described above. To delete all produced files, run

make clean

2 Introduction

ABS is an implementation of the symbolic controller synthesis framework introduced in [3]. The software
applies to sampled-data control systems and to control problems with reach-avoid or invariance specifi-
cation. It is based on the method [3, Th. VIII.4] for computing abstractions and the methods in [5, 6, 7]
for controller synthesis. ABS is specifically described in [2]. This manual provides more details to the
input, output and, more generally, the usage of the program.

5

2.1 Processable control problems

We briefly discuss the processable control problems below. See Fig. 1 for an illustration. The term
control problem refers throughout to a pair of a control system (“plant”) and a specification on that
control system.

The plant is a sampled-data control system whose underlying continuous-time dynamics is of the form

ẋ ∈ f(x, u) + J−w,wK , (1)

where f : Rn × U → R
n is continuous and locally Lipschitz continuous in the first argument, U ⊆ R

m is
non-empty and w ∈ R

n
+. x : R+ → R

n and u : R+ → U denote the state and input signal, respectively.
ABS returns static state-feedback controllers C : X ⇒ U such that the obtain control law takes the

form

u(t) ∈ C(P (x(t))), (2)

where the map P : X ⇒ X given by x 7→ x + J−z, zK for some constant z ∈ R
n
+ models uncertainties in

the measurement of x.
To discuss the processable specifications, let F : Rn × U ⇒ R

n denote the right hand side of the
discrete-time dynamics obtained from sampling (1) with a constant sampling time τ [3, Def. VIII.1]. In
this way, ABS actually works with the discrete-time dynamics

x(t+ 1) ∈ F (x(t), u(t))

and time-discrete signals x : Z+ → R
n, u : Z+ → U .

Reachability

A reach-avoid specification asks to steer each state signal (of the sampled system) starting in a set
A ⊆ R

n into a target set E ⊆ R
n in finite time while avoiding an obstacle set H ⊆ R

n. More formally,
the condition is

x(t) ∈ A =⇒
(

∃T∈Z+
x(T) ∈ E ∧ ∀t∈[0;T] x(t) /∈ H

)

. (3)

and is represented by the triple (A,H,E) of subsets of the state space.

Invariance

An invariance specification asks to keep each state signal starting in a set A indefinitely in a target set
E while avoiding an obstacle set H. To be precise, the condition is

x(0) ∈ A =⇒ ∀t∈Z+
x(t) ∈ E \H (4)

and is also represented by the triple (A,H,E) of subsets of the state space.

ẋ = f(x, u) +WZOH

Plant

?

u x

measure-

ment error
z

τ

Ar

xc(0)

xc(1)

xc(2) xc(3)

xc(4)

xc(5)

xc(T − 2)

xc(T − 1)

xc(T)

Aa

A0

Figure 1: Illustration of the processable plant structure and a reach-avoid specification.

6

2.2 User input and program output

The specification of the control problem to solve is done by an ASCII file and using a special program-
ming language (input language). All the problem-specific user input (including the control problem) is
contained in that file, which we call thereafter problem file.

Every term written in a problem file is understood as a mathematical statement. That is, all the
results returned from the software hold for the literal real numbers appearing in the problem file – not for
floating-point approximations of the literals. For example, if the constant π (the ratio of the circumference
of a circle to the diameter) appears in the definition of the function f in (1) then any given result is valid
for π and not for some approximation of π. However, there is no guarantee that the software will be able
to process or to solve the given control problem.

In the case of a successful controller synthesis the obtained controller is represented in an ASCII file.
More precisely, the abstract controller and the quantizer according to [3, Th. VI.3] are specified in that
file.

7

3 Specification of control problems

Subsequently, the formulation of control problems and of other required parameters is described.

3.1 Preparatory actions

In order to set up your own control problem the following actions must be taken:

1.) Run

make newproblem

in the root directory

2.) Enter a name for your new control problem

3.) Enter the path to an existing directory in your system. (Do not use the tilde ~ for pointing to your
home directory.) In this directory, a subdirectory named as the name of your control problem will
be automatically created. All the files related to your control problem (e.g. problem file, binary
file) will be contained in that subdirectory. This subdirectory must not exist already

4.) Navigate to the previous subdirectory and open the file with file extension abcs using a text editor

5.) Specify your control problem and other parameters in the opened file using the programming
language described in the next subsection

Example: Taking all but the last action above the command line may look as follows

unibw@linux:~/1.2$ make newproblem

Please enter a name for your new control problem: Rocket

Please enter the path to an existing directory: ../ControlProblems

Specify your control problem in ’../ControlProblems/Rocket/Rocket.abcs’.

unibw@linux:~/1.2$ emacs ../ControlProblems/Rocket/Rocket.abcs

3.2 Input language

We use in this section the notation of Section 2. We outline below the entities that the user has to specify:

Entity Description Type

n, m State and input space dimension Integer
z Bound for measurement uncertainty, cf. (2) Vector
X̄1 Operating range of controller Hyper-interval
Ū Input space of right hand side of (1) Hyper-interval
f Unperturbed right hand side of (1) Function
w Bound for dynamic uncertainties, cf. (1) Vector
τ Sampling time Real number

A, E, H Initial, target, obstacle set, cf. (3), (4) Union of hyper-intervals

d1, d2 State and input space discretization parameter Vector

p, q Integration orders for dynamics and growth bounds Integer

Subsequently, we discuss the programming language with which the above entities are specified. At
the same time, the restrictions on the entities above due to the programming language are explained.
Thus, both the syntax and the semantics of the language are explained simultaneously. We actually
discuss only the most relevant subset of the language. The full syntax is included in the appendix.

8

Definition of auxiliary
constants and hyper-intervals

f : Rn × U → R
n

(x, u) 7→ f(x, u)

Other parameters such
as w, τ , z, A, H, E

Real gamma in [0.0125,0.0126]; /* Friction param. */

f: (x,u) in (Real[2],[-2,2]) to y[2]

{

y[0] = x[1];

y[1] = -sin(x[0])-cos(x[0])*u-2*gamma*x[1];

}

SamplingTime : 0.3;

OperatingRange: ([0,2*Pi],[-2,2]);

ListOfPeriodicComponents : (0);

InitialSet : ([0,0],[0,0]);

TargetSet : ([Pi-.1,Pi+.1],[-.1,.1]);

InitialStateSpaceSubdivision : (100,100);

InitialInputSpaceSubdivision : (3);

IntegrationOrder : 5;

IntegrationOrderGrowthBound : 15;

/* This is a comment line */

Figure 2: problem file: Structure (l.h.s) and example (r.h.s.)

Every problem file has a structure as indicated in Fig. 2. In the first part, auxiliary constants and
hyper-intervals are defined. The second part contains the specification of the function f in (1). In the
last part, the remaining parameters are specified. A comment has to be enclosed inside the strings /*
and */, and can appear anywhere in the problem file. The file examples/SinglePole/SinglePole.abcs
is listed in Fig. 2.

We use Backus-Naur Forms for specifying the grammar, where terminals are printed as

terminal

and nonterminals as

nonterminal

Keywords (or reserved words) are printed as

keyword

for better readability of the forms. The two components of productions are separated by the symbol
::= and the alternatives in the second component are separated by a vertical bar |. We refer the reader
to [8] for the concept of context-free grammars. For example, we have the following productions in the
grammar, which state, roughly speaking, that a digit is an Arabic numeral and an integer is a sequence
of digits.

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
literal unsigned integer ::= digit | literal unsigned integer digit

3.2.1 Constants and intervals

A constant c ∈ R can be specified by

Real identifier = expression ;

where expression may represent an element of R or a term of finite compositions of the functions

9

+ Addition
− Subtraction
× Multiplication
÷ Division
ˆ Exponentiation
atan Inverse tangent
cos Cosine
cosh Hyperbolic cosine
exp Exponential
ln Natural logarithm
sin Sine
sinh Hyperbolic sine
sqrt Square root
tan Tangent

See Appendix for the full specification of expression and identifier . For example, we may write

Real a = 2*Pi ;

for representing the circumference of the unit circle. Here, the keyword Pi represents π. An interval
[a, b] ⊆ R, a ≤ b, can be specified using the production

literal interval expression ::= [expression , expression] ;

where expression represents a and b respectively.
A constant c ∈ R can also be uncertain, in which case one can use

Real identifier in literal interval expression ;

to express that c is bounded in an interval but its precise value is unknown.
It is also possible to define vectors v ∈ R

k and matrices M ∈ R
k×l, k, l ∈ N. For example, the vector

v = (
√
2, 23) ∈ R

2 and the matrix in M = (1 2
3 4) ∈ R

2×2 are represented through the lines

Real v[2];

v[0] = sqrt(2);

v[1] = 2^3;

and

Real M[2][2];

M[0][0] = 1;

M[0][1] = 2;

M[1][0] = 3;

M[1][1] = 4;

respectively.

Important: Indices of components are zero-based.

3.2.2 Hyper-intervals

Hyper-intervals Ja, bK = [a1, b1]× . . .× [an, bn], a, b ∈ R
n, a ≤ b, can be specified according

literal hyperinterval expression ::= (interval expression list) ;

where interval expression list demands the specification of the intervals [ai, bi], i ∈ [1;n], according
literal interval expression and written in succession separated by commas. Rn itself can also be considered
a hyper-interval so that hyper-intervals in total can be specified according

hyperinterval expression ::= literal hyperinterval expression | Real [expression] ;

where expression shall represent n.

10

3.2.3 Continuous-time unperturbed dynamics

The syntax for specifying the right hand side in (1) is too complex to explain it using the actual pro-
ductions. Therefore, we use, as it is the default in other programming books, an example. We might
write

f: (x,u) in (Real[2],([-2,2],[0,1])) to y[2]

{

y[0] = x[1] ;

y[1] = - sin(x[0]) - cos(x[0])*u[0] - u[1]*x[1] ;

}

for representing the function f : R2 × U → R
2 defined through

f(x, u) = (x2,− sin(x1)− cos(x1) · u1 − u2x2),

where U = [−2, 2] × [0, 1]. We note that the identifiers x and u shall function in every problem file as
the state and input variable. So, x and u are keywords of the input language. The dimension n shall
appear to the right of the image variable (in the example code it is y) and the dimension m is implicitly
specified through the hyper-interval that is associated to u.

Important: The input space U is also been defined through the previous code fragment. U shall be a
compact hyper-interval.

Important: Indices of components are zero-based.

3.2.4 Bound on dynamic uncertainties

The bound on the dynamic uncertainties w is specified according

BoundOnDynamicUncertainties : expression tuple ;

where expression tuple represents an n-tuple of non-negative real numbers. For example,

BoundOnDynamicUncertainties : (0,1/2) ;

represents w = (0, 12) ∈ R
2.

This specification shall appear at most once in the problem file. Non-appearance means w = 0.

3.2.5 Sampling time

The sampling time τ is specified according

SamplingTime : literal unsigned number ;

where literal unsigned number shall be a positive real number.
This specification shall appear exactly once in the problem file.

3.2.6 Bound on measurement errors

The bound z on the measurement errors is specified according

BoundOnMeasurementErrors : expression tuple ;

where expression tuple represents an n-tuple of non-negative real numbers.
This specification shall appear at most once in the problem file. Non-appearance means z = 0.

11

3.2.7 Specifications

The triple (A,H,E) representing both a reachability problem and an invariance problem is specified as
follows. Each of the sets A, H, E may be a finite union of compact hyper-intervals in R

n, where every
member of the union is specified according to the respective rules below. If k lines according to such
a rule appear appropriately in the problem file then the set is a union of k (not necessarily distinct)
hyper-intervals.

• A:

InitialSet : literal hyperinterval expression ;

This specification shall appear at least once.

• E:

TargetSet : literal hyperinterval expression ;

This specification shall appear at least once.

• H:

ObstacleSet : literal hyperinterval expression ;

Non-appearance of this specification means H = ∅.

3.2.8 Abstraction

• The (finite) set X̄2 is specified implicitly by specifying

– a hyper-interval Ja, bK, a, b ∈ R
n, a < b according

OperatingRange : literal hyperinterval expression ;

This specification shall appear exactly once.

– an integer vector p ∈ N
n according

InitialStateSpaceSubdivision : literal unsigned integer tuple ;

This specification shall appear exactly once.

The hyper-interval Ja, bK = [a1, b1]× . . .× [an, bn] is the set ∪x2∈X̄2
x2 and so X̄2 is implicitly defined

by subdividing every edge [ai, bi] of Ja, bK into d1,i intervals of equal length. More concretely, x2 ∈ X̄2

if and only if there exists k ∈ Z
n
+ satisfying ki ∈ [0; d1,i − 1] for every i ∈ [1;n] and

x2 = a+ v(k) + J0, ηK ,

where v(k)i := kiηi, ηi = (bi − ai)/d1,i, i ∈ [1;n].

If there exists a subset I ⊆ [1;n] so that f possesses the property

f(x+ (bi − ai)ei) = f(x) (5)

for every x ∈ R
n and i ∈ I then one may include a line according

ListOfPeriodicComponents : literal unsigned integer tuple ;

to represent that property. In (5), ei denotes the ith standard basis vector of Rn.

Note: The indices have to be specified zero-based.

12

• The (finite) set U2 is specified implicitly by specifying an integer vector p′ ∈ N
m according

InitialInputSpaceSubdivision : literal unsigned integer tuple ;

The set U2 is then obtained by subdividing the ith edge of U into d2,i intervals of equal length,
i ∈ [1;m]. More concretely, u2 ∈ Ū2 if and only if there exists k ∈ Z

m
+ satisfying ki ∈ [0; d2,i − 1]

for every i ∈ [1;m] and

u2 = a′ + v(k) + η′/2,

where v(k)i := kiη
′

i, η
′

i = (b′i − a′i)/d2,i, i ∈ [1;m], U = Ja′, b′K, a′ ≤ b′.

3.2.9 Order of integrations

The method [3, Th. VIII.4] involves the general solution of the unperturbed dynamics ẋ = f(x, u). How-
ever, the general solution is usually not available as an explicit formula. Therefore, the implementation
uses a Taylor polynomial as an approximation formula instead. In the current version, the degree of the
polynomial (order of the approximation formula) has to be specified by the user. This is done according

IntegrationOrder : literal unsigned integer ;

where the integer shall be positive. Accordingly,

IntegrationOrderGrowthBound : literal unsigned integer ;

specifies the degree of the polynomial used to approximate the growth bound formula.

4 Controller synthesis

4.1 Starting the computation

Having specified the control problem and the other parameters the command

make

run in the problem directory will successively run

1.) the generation of problem-dependent source code

2.) the compilation of a binary file for the controller synthesis for this control system

3.) the controller synthesis

Usually, it is more convenient to launch the previous steps manually. (For example, when performing
the first and second step on a laptop but the computationally most expensive last step on a remote
workstation.) The following commands are provided for this purpose:

1.) make sourcecode

2.) make system

3.) make controller

Note: After make controller the user is asked to choose the actual algorithm to be applied. After
that the actual computation starts. See Section 4.2.
Additionally, the command make clean will remove all files and directories that have been automatically
generated by ABS. The problem file will not be removed.

13

4.2 User choices

In the current version, the user has the following choices:

0. On-the-fly solution to the reach avoid problem. Algorithms as in [6].

1. On-the-fly solution to the invariance problem. Algorithms as in [7].

(!) Note that this option currently assumes that the set indicated as ”OperatingRange” in the input
file contains apriori enclosure of the forwards reachable set of the set indicated as ”TargetSet”. If
this is not known, option 4. would assist the user to formulate the problem correctly following the
steps:

i. Construct an input file with the same problem data except for replacing numerical values to
the right of ”OperatingRange” with numerical values to the right of ”TargetSet”.

ii. Run make and choose ’Compute apriori enclosure and quit’

iii. Compare the set in the output (denoted here by A) with the set introduced as ”Operatin-
gRange” in the original input file (denoted here by B).

iv. If A ⊆ B then do not change anything in the original input file. Go to vi.

v. If B \A 6= ∅ then in the original input file replace numerical values to the right of ”Operatin-
gRange” (set B) with numerical values of the set B ∪A. Go to vi.

vi. Run make , choose option 1.

2. Standard solution to the reach avoid problem. See [6, 3].

3. Standard solution to the invariance problem. See [7].

4. Compute apriori enclosure and quit. This auxiliary function output an apriori enclosure of the
forward reachable set of the operating range. It may be useful to formulate invariance problems.

4.3 Output files

In the case of a successful controller synthesis the file Controller.dat will be created in the directory
Results, where the latter is a subdirectory of the directory where the control problem has been specified.
The file structure is as below.

line i Content

i = 1 n

i = 2 m

i = 3 operating range

i = 4 U

i = 5 state space discretization

i = 6 input space discretization

i = 7 Information on encoding for line 9 on

i = 8 Information on encoding for line 9 on

i ∈
[

o; o+ |X̄2| − 1
]

, Index of the control symbol for the cell with index k,

where o = 9 where i = o+ k is the corresponding line.

A dash - indicates that the value function is either 0 or ∞ on the cell.

14

Appendix

For the understanding of the input language, the user should be familiar with context-free grammars
and Backus-Naur forms [8] in the way those concepts are utilized for defining the syntax of programming
languages. For example, the grammars for the C and Ada programming languages are included in [9]
and [10], respectively. In the context of control theory, we remark that in [11, 12] the input language
used therein is also defined using a context-free grammar.

It is important to note that the grammar is much larger than required for a problem file. The reason
is that the grammar is also internally used for other purposes such as rounding error estimations. We
want the grammar printed in this manual to coincide with the grammar in the implementation.

Grammar

Start symbol (Input file structure)

program ::= function definition

| function definition parameter list

| function definition ode definition

| statement list function definition

| statement list function definition parameter list

| statement list function definition ode definition

Statements

statement ::= declaration

| definition
| declaration and definition

| iteration statement

declaration ::= Real component expression ;

| Interval component expression ;

definition ::= component expression = expression ;

| component expression = literal interval expression ;

| component expression in interval expression ;

declaration and definition ::= Real identifier = expression ;

| Interval identifier = literal interval expression ;

| Real identifier in literal interval expression ;

compound statement ::= { statement list }
iteration head ::= for (identifier=expression,expression,+)

| for (identifier=expression,expression,-)
iteration statement ::= iteration head compound statement

statement list ::= statement

15

| statement list statement

Identifiers and literal nonnegative numbers

identifier ::= nondigit

| identifier nondigit

| identifier digit

literal unsigned integer ::= digit | literal unsigned integer digit

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
nondigit ::= a | b | c | d | e | f | g | h | i | j | k | l | m

| n | o | p | q | r | s | t | u | v | w | x | y | z
| A | B | C | D | E | F | G | H | I | J | K | L | M
| N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

literal unsigned decimal ::= literal unsigned integer . literal unsigned integer

| . literal unsigned integer

| literal unsigned integer .

| literal unsigned integer . literal unsigned integer E + literal unsigned integer

| literal unsigned integer . literal unsigned integer E - literal unsigned integer

| literal unsigned integer . E + literal unsigned integer

| literal unsigned integer . E - literal unsigned integer

| . literal unsigned integer E + literal unsigned integer

| . literal unsigned integer E - literal unsigned integer

| literal unsigned integer . literal unsigned integer e + literal unsigned integer

| literal unsigned integer . literal unsigned integer e - literal unsigned integer

| literal unsigned integer . e + literal unsigned integer

| literal unsigned integer . e - literal unsigned integer

| . literal unsigned integer e + literal unsigned integer

| . literal unsigned integer e - literal unsigned integer

| literal unsigned integer . literal unsigned integer E literal unsigned integer

| literal unsigned integer . E literal unsigned integer

| . literal unsigned integer E literal unsigned integer

| literal unsigned integer . literal unsigned integer e literal unsigned integer

| literal unsigned integer . e literal unsigned integer

| . literal unsigned integer e literal unsigned integer

Expressions

component expression ::= identifier

| identifier [expression]

| identifier [expression][expression]

16

expression ::= multiplicative expression

| expression + multiplicative expression

| expression - multiplicative expression

multiplicative expression ::= signed expression

| multiplicative expression * signed expression

| multiplicative expression / signed expression

signed expression ::= exponential expression

| - exponential expression

| + exponential expression

exponential expression ::= primary expression

| primary expression ^ signed expression

primary expression ::= component expression

| literal unsigned number

| elementary function expression

| (expression)

elementary function expression ::= name of elementary function(expression)

name of elementary function ::= atan | cos | cosh | exp | ln | sin | sinh | sqrt | tan
literal unsigned number ::= literal unsigned integer

| literal unsigned decimal

| Pi

Identifier and component expression lists

identifier list ::= identifier

| identifier list , identifier

identifier tuple ::= (identifier list)

component expression list ::= component expression

| component expression list , component expression

component expression tuple ::= (component expression list)

Intervals

literal interval expression ::= [expression , expression]

interval expression ::= component expression

| literal interval expression
| Real

interval expression list ::= interval expression

| interval expression list , interval expression

17

Hyper-intervals

literal hyperinterval expression ::= (interval expression list)

hyperinterval expression ::= literal hyperinterval expression

| Real [expression]

interval hyperinterval expression list ::= interval expression

| hyperinterval expression
| interval hyperinterval expression list , interval expression

| interval hyperinterval expression list , hyperinterval expression

interval hyperinterval expression tuple ::= (interval hyperinterval expression list)

Explicitly defined function

function definition ::= function declaration function head compound statement

function declaration ::= identifier:

function image ::= component expression tuple

| component expression

function head ::= identifier in interval expression to function image

| identifier in hyperinterval expression to function image

| identifier tuple in interval hyperinterval expression tuple to function image

Ordinary differential equation

ode definition ::= function declaration function head ode statement

ode statement ::= { ode equation ; initialvalue list }
| { initialvalue list ode equation ; }

ode equation ::= diff (identifier , identifier) = identifier identifier tuple

| diff (identifier tuple , identifier) = identifier identifier tuple

initialvalue ::= initialvalue (component expression , expression) ;

initialvalue list ::= initialvalue

| initialvalue list initialvalue

Parameters

literal unsigned integer list ::= literal unsigned integer

| literal unsigned integer list , literal unsigned integer

literal unsigned integer tuple ::= (literal unsigned integer list)

18

expression list ::= expression

| expression list , expression

expression tuple ::= (expression list)

parameter list ::= parameter

| parameter list parameter

parameter ::= ListOfPeriodicComponents : literal unsigned integer tuple ;

| InitialStateSpaceSubdivision : literal unsigned integer tuple ;

| InitialInputSpaceSubdivision : literal unsigned integer tuple ;

| SamplingTime : literal unsigned number ;

| InitialSet : literal hyperinterval expression ;

| TargetSet : literal hyperinterval expression ;

| ObstacleSet : literal hyperinterval expression ;

| OperatingRange : literal hyperinterval expression ;

| BoundOnDynamicUncertainties : expression tuple ;

| BoundOnMeasurementErrors : expression tuple ;

| IntegrationOrder : literal unsigned integer ;

| IntegrationOrderGrowthBound : literal unsigned integer ;

19

References

[1] G. Reissig, A. Weber, and H. Zhou, ABS – A Software for Abstraction-based Controller Synthesis, Bundeswehr Univer-
sity Munich, Programmer’s Manual.

[2] A. Weber, E. Macoveiciuc, and G. Reissig, “ABS: A formally correct software tool for space-efficient symbolic synthesis,”
in Proc. 25th ACM Intl. Conf. on Hybrid Systems: Computation and Control (HSCC), Milan, Italy, May 4-6, 2022,
2022. doi:10.1145/3501710.3519519

[3] G. Reissig, A. Weber, and M. Rungger, “Feedback refinement relations for the synthesis of symbolic controllers,” IEEE
Trans. Automat. Control, vol. 62, no. 4, pp. 1781–1796, Apr. 2017. doi:10.1109/TAC.2016.2593947

[4] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato, Version Control with Subversion, for subversion 1.7 ed., 2011,
http://svnbook.red-bean.com/.

[5] G. Reissig and M. Rungger, “Symbolic optimal control,” IEEE Trans. Automat. Control, vol. 64, no. 6, pp. 2224–2239,
Jun. 2019. doi:10.1109/TAC.2018.2863178

[6] E. Macoveiciuc and G. Reissig, “Memory efficient symbolic solution of quantitative reach-avoid problems,”
in Proc. American Control Conference (ACC), Philadelphia, U.S.A., 10-12 Jul. 2019, 2019, pp. 1671–1677.
doi:10.23919/ACC.2019.8814850

[7] E. Macoveiciuc and G. Reissig, “Guaranteed memory reduction in synthesis of correct-by-design invariance controllers,”
in Proc. 21st IFAC World Congress, Berlin, Germany, Jul. 12-17, 2020, ser. IFAC-PapersOnLine, vol. 53, no. 2, 2020,
pp. 5561–5566. doi:10.1016/j.ifacol.2020.12.1567

[8] S. Ginsburg, The mathematical theory of context-free languages. McGraw-Hill Book Co., New York-London-Sydney,
1966.

[9] B. W. Kernighan and D. M. Ritchie, The C programming language, 2nd ed., ser. Prentice-Hall software series. Prentice
Hall, 1 Apr. 1988.

[10] J. Barnes, Programming in Ada 2012. New York, NY, USA: Cambridge University Press, 2014.

[11] S. Mouelhi, A. Girard, and G. Gössler, “CoSyMA: A tool for controller synthesis using multi-scale abstractions,” in
Proc. 16th Intl. Conf. Hybrid Systems: Computation and Control (HSCC), Philadelphia, PA, U.S.A., Apr. 8-11, 2013,
2013, pp. 83–88.

[12] S. Mouelhi, A. Girard, and G. Gössler, CoSyMA: A Tool for Controller Synthesis Using Multi-scale Abstractions,
INRIA, Oct. 2012, Research Report no 8108.

20

http://dx.doi.org/10.1145/3501710.3519519
http://dx.doi.org/10.1109/TAC.2016.2593947
http://svnbook.red-bean.com/
http://dx.doi.org/10.1109/TAC.2018.2863178
http://dx.doi.org/10.23919/ACC.2019.8814850
http://dx.doi.org/10.1016/j.ifacol.2020.12.1567

	Quick Start
	Introduction
	Processable control problems
	User input and program output

	Specification of control problems
	Preparatory actions
	Input language
	Constants and intervals
	Hyper-intervals
	Continuous-time unperturbed dynamics
	Bound on dynamic uncertainties
	Sampling time
	Bound on measurement errors
	Specifications
	Abstraction
	Order of integrations

	Controller synthesis
	Starting the computation
	User choices
	Output files

	Appendix
	References

